
Paper category: Genetic Programming (submitted
to GP-98)

Learning Nonlinear Predictive Models for Lossless Image
Compression

Alex Fukunaga and Darren Mutz

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr., M/S 525-3660
Pasadena, CA 91109-8099

alex.fukunaga@jpl.nasa.gov, darren.mutz@jpl.nasa.gov
(626)306-6157

Abstract
We describe a genetic programming system which learns nonlinear predictive models for lossless

image compression. S-expressions which represent nonlinear predictive models are learned, and the
error image is compressed using an adaptive Huffman encoder. We show that the proposed system
is capable of achieving compression ratios superior to that of the best known lossless compression
algorithms.

1 Introduction

Lossless image compression is a problem with many real-world applications which has been studied
by many researchers. The current dominant paradigm for lossless compression is predictive coding.
State of the art lossless image compression algorithms (based on predictive coding) include the CALIC
algorithm of Wu and Memon [15] and the LOCO-I algorithm of Weinberger et al. [14]. Reviews of
lossless image compression can be found in [4, 51.

This paper proposes the use of genetic programming (GP) [3] in lossless image compression as
the mechanism for representing and learning nonlinear models for predictive coding. Because of the
enormous computational cost of evolving nonlinear predictive models would be prohibitively expensive
using standard GP systems, we have implemented a highly efficient, genome-compiler G P system which
compiles s-expressions into native machine code to enable the application of GP to this problem.

We evaluate our GP-based compression system by comparison with the state of the art lossless
image compression algorithms and show that it is possible to obtain compression ratios superior to the
best known algorithms.

The rest of the paper is organized as follows. In Section 5, we review predictive coding based image
compression. Section 3 describes the GP-based compression system. Section 4 presents an empirical
evaluation of our system using some test images, and compares the results with that of the best known
lossless compression algorithms. We discuss related work in 5, and we conclude in Section 6 with a
discussion and directions for future work.

2 Predictive Coding Based Image Compression

Predictive coding is a.n image compression technique which uses a compact model of an image to predict
pixel values of an image based on the values of neighboring pixels. A model of an image is a function

1

mailto:alex.fukunaga@jpl.nasa.gov
mailto:darren.mutz@jpl.nasa.gov

Encoder(Mode1,Image)
for x = 0 to x m a x

for y = 0 to y m a x
Error[x,y] = Image[x,y] - Model(x,y)

Decoder(Mode1)
for x = 0 to x m u x

for y = 0 to ymux
Image[x,y] = Model(x,y) + Error[x,y]

Figure 1: Algorithm schema for predictive coding. Moclel(z, y) is a function that takes the coordinates of a pixel and
returns a predicted value of that pixel. I m a g e and Error are two-dimensional arrays.

rnodel(x , y) , which computes (predicts) the pixel value at coordinate (x , y) of an image, given the values
of some neighbors of pixel (x , y) , where neighbors are pixels whose values are known. Typically, when
processing an image in raster scan order (left to right, top to bottom), neighbors are selected from the
pixels above and to the left of the current pixel. For example, a common set of neighbors used for
predictive coding is the set {(x- l ,y- i) : (x ,y-1) , (x+i ,y- l) , (x- l ,y)} . Linear Predict ive coding is a simple,
special case of predictive coding in which the model simply takes an average of the neighboring values.
Nonlinear models assign arbitrarily complex functions to the models.

Suppose that we have a perfect model of an image, i.e., one which can perfectly reconstruct an
image given the pixel value of the border pixels (assuming we process the pixels in raster order). Then,
the value of the border pixels and this compact model is all that needs to be transmitted in order
to transmit the whole information content of the image. In general, it is not possible to generate a
compact, perfect model of an image, and the model generates an error signal (the differences at each
pixel between the value predicted by the model and the actual value of the pixel in the original image.

There are two expected sources of compression in predictive coding based image compression (as-
suming that the predictive model is accurate enough). First, the error signal for each pixel should
have a smaller magnitude than the corresponding pixel in the original image (therefore requiring fewer
bits to transmit the error signal). Second, the error signal should have less entropy than the original
message, since the model should remove of much of the “principal components” of the image signal.’
To complete the compression, the error signal is compressed using an entropy coding algorithm such
as I-Iuffman coding or arithmetic coding [6]. State of the art algorithms such as CALIC also perform
context modeling prior to applying entropy coding - see [4, 51. Our system does not apply context
modeling techniques.

If we transmit this compressed error signal as well as the model and all other peripheral information,
then a receiver can reconstruct the original image by applying an analogous decoding procedure (see
Figure 1).

3 Evolving Nonlinear Predictive Models with a GP
Given an image, we use genetic programming to generate a Lisp s-expression which represents a non-
linear model of the image predictive coding based compression.

The terminals used for genetic programming were:

0 values of the four neighboring pixels Image[x- l , y-11, Image[x,y-l], Image[x+l, y-i], Image[x-1,yJ

0 selected constant values: 1, 5, 10, 100.

The functions used were:

‘If the model were perfect, then the error signals would consist of all O’s, and can be compressed to a single byte.

0 arithmetic functions: +,-,*,% (protected division [3])

MIN(a,b) and MAX(a,b) functions which return the minimum and maximum values of their two
arguments, respectively.

As we noted in Section 2 , a standard entropy coding algorithm needs to be applied to the error
image. For this experiment, we used an adaptive Huffman coder' as the entropy coder. In addition,
note that given the four pixel neighborhood we use, the pixel values of the borders of the image, i.e.,
the top row, the leftmost column, and the rightmost column need to be stored directly (these are the
border cases for which we can not apply the predictive model). Also, the model (which is unique for
each image) must also be stored in the compressed image data. We applied Unix compress (which uses
Lempel-Ziv coding) to the border pixels and the model, and concatenated these to the Huffman-coded
error signal. Finally, two integer values indicating the size of the image (height,width) were added to
the file. Given this da.ta, we can reconstruct an image without loss of information.

Thus, the exact file size of the compressed image (the values reported in the experiments below) is:
sizeof(~uffrnu1zGodedError) + sizeof(HuffmanCodeBook)+ sizeof(CompressedBorder) + sizeof(CompressedMode1)

+ sizeof(2 integers)
In tflle experiments described below, our G P system was configured as follows: population=500,

generations=30, tournament, selection (size=5), 90% crossover, 10% reproduction, no mutation).
Because the s-expression models are unconstrained in the range of values that they can return,

the worst-case size of the codebook is actually the number of pixels in the image, even though there
are only 256 unique pixel values in the original image. This means that the size of the codeboolc can
possibly become a very significant component of the compressed data that must be transmitted. We
therefore implemented a execution speedup heuristic which abandons evaluation of an individual once
the number of unique error image pixel values generated exceeds either 40000 or 25% of the tota.1
number of pixels in the input image. By doing this, we avoid the cost of running the entropy coder for
individuals that both a) look very unpromising and b) will be extremely computationally expensive to
evaluate.

3.1 Genome Compiler
In order to evaluate a single individual, the s-expression needs to be evaluated for each pixel in the
image (excluding the borders). This requires hundreds of thousands to millions of repeated execution
of the same s-expression per evaluation. We originally implemented the image compression application
based on lil-gp 1.1 [9], a well-known, efficient C implementation of GP This implementation required
almost two weeks of CPU time to execute a 50 generation, population 2000 GP run for compressing
a 256 by 256 image on a 296-MHz Ultrasparc 2. Not only was this much too slow for practical use,
it made experimentation infeasible. Thus, we sought to make individual evaluations as efficient as
possible.

We therefore extended lil-gp by implementing a genome compiler which translates s-expressions
into efficient SPARC ma.chine code prior to execution. The major benefit of compilation is the removal
of function call overhead during the s-expression tree evaluation, which we found was responsible for
the vast majority of the computation time in the standard lil-gp based system. While the compilation
process itself requires some computational overhead, we found that this was negligible when the same
s-expression was evaluated many times. Using the current implementation of our genome compiler, we
can execute a 50 generation, population 2000 G P run for compressing a 256 by 256 image in about 2-3
days on an 296MHz Ultrasparc 2, which is significantly better than the 10-15 days it took prior to the
implementation of the compiler. Figure 2 shows an example of this compilation process.

'More specifically, we used the Huffman coder in [?] and computed the character frequencies before initializing the
coder.

....... fP.0

m u l t f p O , f p l , fpO
mov f p 3 1 , f p l

...... I l l a d d f p O , f p l , fpO 1 1
2 ..mov fp31.!. E?
3 ...s ub f P l l fP?.! .fP?

Figure 2: Example of s-expression compilation: An s-expression with corresponding assembly-level
code. Numbered breaks in the code correspond to the code generated so far when the post order
traversal has progressed to the node indicated in the tree diagram.

The genome compiler’s performance, when applied to problems where individuals are repeated
many times, compares favorably with the fastest reported GP systems, including the CGPS system of
Nordin and Banzhaf [7], which directly manipulates SPARC machine code, yielding roughly two orders
of magnitude speedup over lil-gp on symbolic regression problem^.^ Further details about the genome
compiler will be available in a forthcoming report.

4 Results
The genetic programming system for evolving models for predictive coding lossless image compression
was evaluated by comparing the size of the compressed files with a number of standard lossless com-
pression algorithms on a set of grey scale images. The images used were science images of planetary
surfaces taken from the NASA Galileo Mission image archives (we used these images because these are
of greatest interest to our sponsor). Note that in this report, we focus on grey scale images, but the
technique can be straightforwardly extended to color images by operating on three image planes (red,

3By which we mean the comparative speed in time to execute a GP run over standard C implementations of G P such
as lil-gp[9] and SGPC [13] running on the same problem the same machine as the genome compiler.

4Note that for image compression, the majority of the time is now spent in the adaptive Huffman coder, which is why
the speedup compared to the standard lil-gp implementation is only around a factor of 5. This point is further discussed
in 6 .

blue, green) ~ this is what many state of the art algorithms such as CALIC do.
The compression ratio of the following algorithms are shown in Table 1.

0 evolved The evolved predictive coding compression algorithm

0 CALIC: A stat8e of the art lossless image compression algorithm, described in [15]. In general,
this algorithm provides the best compression ratio among previous algorithms.

0 LOCO-I This is an algorithm developed by Weinberger et a1 [14] which was recently selected as
the new IS0 JPEG-LS (lossless JPEG) baseline standard.

0 gzzp, compress, pack: These are standard Unix string compression utilities; gzzp implements
the Lempel-Ziv (LZ77) algorithm, compress implementes the adaptive Lempel-Ziv-Welch (LZW)
algorithm, and pack uses Huffman coding.

0 szip: A software simulation of the Rice Chip, the current standard lossless compression hardware
used by NASA.

It important to note that a different model is evolved for each image that the genetic programming
system is applied to. In contrast, the other approaches (CALIC, GIF, etc.) apply a single model
to every image. Thus, the time to compress an image using the genetic programming approach is
several orders of magnitude greater than the time it takes to compress an image using other methods.
However, the time to decompress an image is competitive with other methods. Therefore, the genetic
programming system is an example of an asymmetric compression algorithm (slow compression, fast
decompression).

Image name

12465 (20) 13298 11350 11699 10716 10460 9594 19055 earth8
13269 (18) 15551 12520 13117 11476 11183 10218 21039 earth7
12793 (8) 13264 10925 11339 10488 10144 9288 20400 earth6
7727 (30) 8072 6865 7441 5857 5631 5513 11246 earth4-128

40585 (30) 55068 40908 42502 32932 31798 30380 72643 earth
szip pack gzip compress LOCO-I (JPEG-LS) CALIC evolved original size

Table 1: Compression ratios of various compression techniques applied to set of test images.

As Table 1 shows, the compressed file sizes obtained using the GP-evolved models is superior to
all of the other algorithms for these test images. Due to the extremely long runtimes for evolving
compressed images (at the time that the experiments were being run, the genome compiler was still
under development), we have only collected data for a small number of runs. We are currently in the
process of collecting more data to better understand the relative efficacy of evolutionary compression
on a wide range of image classes.

5 Related Work
Salami developed part of an evolvable hardware system for lossless image compression [lo]. They used
a genetic algorithm to evolve weights for a linear predictor for predictive coding, and showed that
the entropy of the error image for some test images was lower than that of CALIC and LOCO (the
error image entropy was measured instead of the compression ratio, since they did not implement an
entropy coder). However, note that the entropy of the error image is not necessarily indicative of
the relative compression ratio obtained by a complete compression system, and is only a first-order
approximation for actual compression results. This is in part because entropy coding techniques such as
Huffman Coding do not perform optimally for arbitrary distributions of error pixel values, and actual
performance of the coders depends largely on the error pixel distributions. Furthermore, CALIC and
LOCO apply context modeling techniques to the error image to further reduce entropy, and the error

image entropy metric used in [lo] does not take this into account. For example, the error image
entropy for the barb test image used by Salami et a1 is smaller for LOCO (5.625) than for CALIC
(5.636), but the number of bits/pixel in the final compressed file is smaller for CALIC (4.41) than for
LOCO (4.69). Also, the old standard JPEG’ obtains the lowest error image entropy on two of Salami
et al’s images, even though the final compressed file size is the worst (by a significant margin) among
the three algorithms for all eight of the images. These discrepancies between error image entropies and
actual compression performance indicates that error image entropy is not a good metric for comparing
different compression algorithms. Thus, while Salami et al’s work was a very encouraging, important
first step in evolving linear predictive coders, it is not clear that the low-entropy error images discovered
by their system could be further encoded into a file that is smaller than the compressed files created
by state of the art algorithms such as CALIC and LOCO.

Our work differs from [lo] in that we evolved nonlinear predictive models using genetic program-
ming, as opposed to linear models in evolvable hardware. Furthermore, we have implemented a com-
plete compression system, and showed that this approach is capable of yielding smaller compressed files
than that of the best known lossless compression algorithms, CALIC and LOCO. However, because our
system is implemented entirely in software on general purpose hardware, it is likely to be significantly
slower than the speeds achievable using a dedicated evolvable hardware platform.

Neural networks have previously been used to learn nonlinear predictors (c.f. [l]). However, it
is difficult to compare these approaches with our work because they do not compare their system to
current, standard lossless image compression algorithms (this is in part because many of the advances
in lossless compression are quite recent [4, 51.

Salami et al. have also developed an evolvable hardware system for lossy compression which evolves
nonlinear predictive models on function level evolvable hardware [12, 111.

Image compression using G P has been previously studied in the context of programmatic com-
pression, where essentially, an image is used as the target function for symbolic regression. Koza [3]
initially demonstrated this technique on a 30 by 30 bitmap. Nordin and Banzhaf [8] used CGPS, a very
efficient GP system, and heuristics such as chunlcing (tiling an image into smaller subimages which were
separately compressed) to scale up the technique to 256 by 256 images. Programmatic compression is
theoretically capable of being lossless (if a perfect model of the image is discovered), but it is essentially
a lossy technique, and is very different from lossless predictive coding compression.

Work in the implementation of high-performance G P systems closely related to our genome compiler
includes that of Nordin and Banzhaf, [7], whose CGPS system directly manipulates SPARC machine
code, and Juille and Pollack [a], whose system compiles s-expressions into virtual stack-based machine
code.

6 Discussion and Future Work
The research reported here is preliminary, and is only the first step in understanding the capabilities
and limitations of using genetic programming for lossless image compression.

We believe that our initial results are quite promising, since they show that the evolved models
can yield an improvement over CALIC, which is currently the best known lossless image compression
algorithm. Furthermore, these results were obtained without any special tuning of algorithm control
parameters or the function/terminal sets for the GP system.

However, it should be noted that the genetic programming system takes several orders of magnitude
more time to evolve a model that achieves its superior results (several hours per image) tha.n the other
approaches (which run in a few seconds). Although slow compression times are acceptable for some
applications, as long as decompression is fast (e.g., for archiving images), this is not acceptable for
applications requiring near real-time compression times. In addition, the slowness of the current G P
system makes it difficult for us to experiment with variations on the technique, because it takes too
much time to gather statistically significant data.

’This refers to the previous standard lossless JPEG algorithm, prior to the recent selection of the new LOCO-I/JPEG-
LS standard.

.

We have implemented a genome compiler to speed up the execution time (see Section 3.1, and have
succeeded in obtaining a factor of 5 speedup over standard GP for 256x256 images. However now
the vast majority (98% for 256x256 images) of the execution time is spent in the adaptive Huffman
coding code. Therefore, a promising avenue explore is to evolve models by using error image entropy
as the fitness measure, instead of compression ratio (as done by [lo]) ~ this would allow us to avoid
running the Huffman encoder for each individual evaluation, resulting in significant execution speedup.
However, this may result in degraded compression performance, since, as we noted above, error image
entropy is not always a reliable predictor of compression ratio. A compromise would be to develop
a modified objective function computation scheme in which we only execute the Huffman coder for
individuals that generate error image entropies which are not significantly worse than that of the best
individual found so far. This would enable us to eliminate entropy coding for the majority of individual
evaluations, and will likely lead to an order of magnitude speedup.

There are many more directions which can be pursued in evolutionary image compression. First,
it seems worthwhile to experiment with different entropy coders. Second, there are more sophisticated
predictive coding architectures which can be explored. One such example would be a two-pass model
in which a standard (evolved or hand-coded) linear model is first applied to minimize the first order
entropy, then followed by the application of an evolved nonlinear model to model the error after the
linear model is applied. Third, we can divide the image6 into subimages and apply the compression
separately to the subimages.

Finally, a very intriguing prospect would be to try to evolve models which are more general than
the image-specific nonlinear models that were explored in this paper. By using sets of images as fitness
cases instead of a. single image, it is possible to try to evolve a single predictive model (such as those
handcoded in traditional lossless compression algorithms) which works well for a large class of images.
This will no doubt require an enormous amount of computation. However, it may be possible to
generate a nonlinear model, which when possibly combined with context modeling techniques, yields
a better, general purpose model than those used by state of the art algorithms.

7 Acknowledgments
The research described in this paper was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics and Space Administration.
Thanks to Adrian Stoica, Benny Toomarian, and Ken Hayworth for helpful discussions, and to Bill
Punch and Douglas Zonker for making lil-gp publically available.

References
[l] W.W. Jiang, S.-Z Kiang, N.Z. Hakim, and H.E. Meadows. Lossless compression for medical imageing

systems using linear/nonlinear prediction and arithmetic coding. In Proc. IEEE International Symposium
on Circuits and Systems, volume 1, pages 283-6, 1993.

[a] H. Juille and J.B. Pollack. Massively parallel genetic programming. In P. Angeline and I(. Kinnear, editors,
Advances in Genetic Pvogramming 2. MIT Press, 1996.

[3] J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT
Press, 1992.

[4] N. Memon and X. Wu. Lossless compression. In CRC Handbook of Communication. 1996 (to appear).

[5] N. Memon and X. Wu. Recent progress in lossless image coding. The Computer Journal, to appear, 1997.

[GI M. Nelson and J-L. Gailly. The Data Compression Book (second edition). M&T Books, 1996.

[7] P. Nordin and W. Banzhaf. Evolving turing-complete programs for a register machine with self-modifying
code. In Proceedings of the International Conference on Genetic Algorithms. Morgan Kaufmann, 1995.

‘Nordin and Banzhaf called this “chunking” [SI; Salami et al [ll] have applied this technique in evolvable hardware
based lossy compression

[8] P. Nordin and W. Banzhaf. Programmatic compression of images and sound. In Proceedings of the Annual
Genetic Programming Conference, pages 345-350, 1996.

[9] B. Punch and D. Zonker. lil-gp genetic programming system version 1.1 beta version. Michigan State
University, http://GARAGe.cps.msu.edu/software/lil-gp/index.html, 1996.

[lo] M. Salami, M. Iwata, and T. Higuchi. Lossless image compression by evolvable hardware. In Proc.
European Conf. on Artificial Life. MIT Press, 1997.

[11] M. Salami, M. Murakawa, and T. Higuchi. Data compression based on evolvable hardware. In International
Conference on Evolvable Systems. Springer Verlag LNCS, 1996.

[la] M. Salami, M. Murakawa, and T. Higuchi. Lossy image compression by evolvable hardware. In Proc.
Evolvable Systems Workshop, International Joint Conference on Artificial Intelligence, 1997.

[13] W. Tackett and A. Carmi. sgpc: simple genetic programming in c. ftp://ftp.io.com/pub/genetic-
programming, 1993.

[14] M.J. Weinberger, G. Seroussi, and G. Sapiro. Loco-i: A low complexity, context-based, lossless image
compression algorithm. In Proceedings of the Data Compression Conference (DCC’96), pages 140-149,
1996.

[15] X. WU and N. Memon. Context-based, adaptive, lossless image codes. IEEE Transactions on Communi-
cations, 45(4), 1997.

http://GARAGe.cps.msu.edu/software/lil-gp/index.html
ftp://ftp.io.com/pub/genetic

